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1.1 Basic equations for dynamic analyses 

Basic equation for dynamic systems 

• Creo Simulate can only solve dynamic problems which can be described with help of 
the following linear differential equation (DEQ) of second order: 

 

 

• Herein, we have: [𝑀]=mass matrix, [𝐶]=damping matrix, [𝐾]=stiffness matrix,  
{𝐹}=force vector, {𝑥}=displacement vector and its derivatives with respect to time 

 

Modal analysis as basis for all dynamic studies 

• In order to determine the fundamental frequencies of a mechanical structure, first a 
modal analysis is performed before any subsequent dynamic studies are carried out 

• The equation which is solved here is a special case of the above differential equation: 

 

 

• Hence, for fundamental frequency determination in Creo Simulate, no damping 𝐶  is 
taken into account, so the real mechanical structures to be computed may only contain 
little damping to keep the error small 

• Damping is taken into account only during subsequent dynamic analysis like shown on 
the next slide 
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1.2 Solution method coded 

Solution Sequence: 

• In Creo Simulate, the mentioned linear differential equation of second order, 
 
 
is not solved directly in physical coordinates, but in the following way: 

• Before any dynamic analysis is performed in Simulate, the damping-free modal 
analysis,                           , is carried out to obtain the modal base (eigenvector 
matrix) for the modal transformation 

• The system is then transformed from physical space 𝑥  to modal space 𝜉  by 
replacing the physical coordinates with modal coordinates: 𝑥 = 𝜙 𝜉  

• Herein, 𝜙  is the eigenvector matrix, and 𝜉  modal coordinates; 𝜙  has a number of 
rows equal to the DOF in the model, and columns equal to the number of modes;      
𝜉  has one column and rows equal to the number of modes 

• In a subsequent dynamic analysis, in which modal damping [𝐶] = 2𝛽 [𝑀]𝜔 and a 
forcing function is added, we have [𝑀], [𝐶] and [𝐾] as diagonal matrices now in modal 
coordinates! 

• After the solution is performed, the solution is transformed back into physical space 
for post-processing 

Remark: This solution method is used in many FEM codes for linear, small damped 
dynamic systems because of its computational efficiency (only diagonal matrices) and 
various practical advantages, e.g. different dynamic analysis types and damping values 
can be rapidly executed on base of the existing modal analysis! 
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Let’s now look at the modal damping [𝐶] = 2𝛽[𝑀]𝜔 mentioned on the previous slide: 

• For a simple, linear damped one-mass-oscillator (=harmonic oscillator with mass 𝑚, 
velocity proportional damping constant 𝑐 and spring stiffness 𝑘), the damping ratio 
𝛽 (in German “Lehrsches Dämpfungsmaß”) is 

 

                                            

 

• Herein, 𝑐𝑐𝑟𝑖𝑡 is the so called “critical damping”, 
leading to the aperiodic limit case 𝛽 = 1, in which the  
oscillator just does not overshoot (red curve right) 
 

• The damping ratio 𝛽 is often expressed in % (like in Simulate), so we have 
  very strong damping (creeping case) 
  aperiodic limit case (critical damping = no overshooting) 
  max. damping supported in Creo Simulate (green curve in the diagram) 
  typical values used for many small damped, real mechanical structures 
  no damping 

• Remember:  
The undamped and damped fundamental angular frequencies are related as follows: 
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1.3 Damping 

There are many methods to measure damping, like e.g.: 

• Logarithmic decrement 𝛿 (relative damping): 

 

                                            

• 𝛿 can simply be obtained from the decrease of amplitudes 𝑥𝑖 in an experiment 
evaluated in the time domain where the structure is dying out over the time with its 
natural frequency  

• 𝛿 can then be transferred into 𝛽 with help of the following equation (for small 𝛽): 

 

 

• Another method for an experiment  
evaluated in the frequency domain  
is measuring the bandwidth B (in  
German “Halbleistungsbandbreite”)  
or the magnification factor Q of the  
oscillator (for 𝛽 <<1): 

 

 

• This is exemplarily depicted right  
for 𝛽 =0.1 
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1.4 Limitations of the solution coded in Creo Simulate 

Limitations of the solution method  

• We have only a linear system (all matrices are constant), that means no nonlinearities 
can be taken into account like 

 Contact 
(therefore unknown force-vs-time curves of impact problems cannot be computed, 
but have to be assumed and then applied as external force function vs. time [4]) 

 Change of constraints  
(all dynamic analyses use the constraints defined in the modal analysis!)  

 Nonlinear material 

 Nonlinear damping (e.g. from friction, hydraulic devices,…) 

• Only modal damping can be applied to keep the damping matrix diagonal and 
therefore run times short (this damping is called in German language “Bequem-
lichkeitshypothese“ – “hypothesis of comfort”) 

• A severe limitation is that no discrete damper, not even a linear one, is supported 
(discrete linear springs are supported in dynamic analysis!) 

• A discrete linear damper can only be approximated, this means those mode shapes 
which are damped by a discrete damper may be taken into account with a higher, 
individual modal damping 

• Therefore, in Creo Simulate the damping can be applied in three ways: 

 Constant for the complete frequency domain 

 As function of frequency 

 For individual modes 
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1.5 Result quality assurance when performing dynamic analysis 

• The solution method is of approximative nature even for ideal linear structures: 

 Continuum mechanical structures have an infinite number of natural modes, but for 
computation only a finite number of modes can be taken into account by the FEM code  

 Therefore, the modal base is cut after a certain number of modes, but in theory, the 
exact solution can only be obtained by superposing all modes to the total response! 

 Depending on this number of modes taken (or better not taken) into account, the 
analysis results may become pretty inaccurate! 

• Therefore, it is in the responsibility of the user to assure that a sufficient number of 
modes is taken into account to obtain results of the required accuracy! 

• There are a couple of methods how the result quality can be assured: 

 Compare the results with an analytical solution (if existing!) 

 Repeat the dynamic analysis with an increasing number of modes and see if the results 
converge (typically done in analyses with force excitation) 

 Only for analyses with base excitation: Check if the sum of the effective masses 𝑚𝑖, 𝑒𝑓𝑓
 

of all modes taken into account is close to the total mass of the structure 

 A rule of thumb is to take into account all modes with eigen frequencies until at least 
the double value of the excitation frequency, but often even this may not be sufficient 
(sometimes the author had to use >4x the max. excitation frequency) 

 Check that for an excitation frequency of Zero Hz, the results match the results of a 
separately performed linear static analysis undertaken with the same model! 
Note: There will always be a difference at the location of force introduction! 

 … 
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1.5 Result quality assurance when performing dynamic analysis 

Participation factors and effective masses: 

• For all dynamic analyses with base point excitation, the  
code allows to compute mass participation factors and  
effective masses: 

 The effective mass 𝑚𝑖, 𝑒𝑓𝑓
, multiplied with the base point acceleration, reflects the share 

this mode has to the total base point reaction force! 

 Note the effective mass of the mode depends on the excitation direction! 

 The sum of the squares of the participation factors is the total absolute mass of the 
structure! 

• A Simulate example output for a 2-mass oscillator with a total mass of 2 kg: 
(=0.002 t; analysis was performed in mm, t, s unit system!) 

 
 
 

• Note: Modes with an effective mass of Zero cannot be excited over the base points 
(=the interface the structure is mounted to), but of course they may be by another 
external force directly acting on certain points of the structure! 

• Effective masses are therefore just of importance for base point excited structures 
and not for force excited structures! 

• Since Creo Simulate 3.0, the mass participation factors can also be requested in a 
modal analysis (output very comfortably for all three translations and rotations!) 
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Mode  frequency     part. factor  eff. mass  tot. mass 

----  ------------  ------------  ---------  --------- 

   1  5.445276e+01  4.351645e-02      94.7%      94.7% 

   2  1.425516e+02  1.027535e-02       5.3%     100.0% 

m1,eff = (4.351645e-02)2 t = 1.894 kg =   94.7 %   
m2,eff = (1.027535e-02)2 t = 0.106 kg =     5.3 % 

Total mass  = m1,eff + m2,eff = 2.000 kg = 100.0 % 

Creo 3.0 

Creo 2.0 
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2.1    Standard modal analysis 

2.1.1 Introduction 

• Like mentioned in chapter 1, the modal analysis just solves 

 

• Note again damping [𝐶]{𝑥}  is not taken into account in the 
Simulate modal analysis, so fundamental frequencies may 
appear in reality at slightly lower frequencies than predicted  

• For typical damping around 1-4 %, this influence is negli-
gible, but for the max. modal damping supported in the 
subsequent dynamic analysis (50 %), it may be up to 13.4%: 

 

• The user has the following choices to request modes: 

 Number of modes (always starting at Zero Hz) 

 Al modes in frequency range (with arbitrary min. and max. 
frequency) 

• The code supports constrained and unconstrained (“free-
free”) modal analysis with rigid mode search 

• Displacements (mode shapes) are always output as result; 
optional are stresses, rotations (for beams and shells), local 
stress errors, and new in Creo 3.0 mass participation factors 

• Until Creo 2.0, mass participation factors could only be 
requested in subsequent dynamic analysis with base point 
excitation 
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2.1    Standard modal analysis 

2.1.1 Introduction 

• All known convergence methods are supported, with 
the exception of multi-pass adaptive convergence on 
measures (as supported in static analysis) 

• Note the plotting grid must be set in the modal 
analysis, too, and cannot be changed in the 
subsequent dynamic analysis! 

 

 

Mode shape output: 

• Per default, the eigenvector displacements (mode 
shapes) are output unit normalized (=max. disp. 
magnitude scaled to 1), but the user may request 
mass normalization acc. to the equation 

 

• This is sometimes advantageous since modal stress 
(if requested as result) is always output for mass 
normalized mode shapes, and for meaningful modal 
stress evaluation it does not make sense to use 
different normalizations for displacements and 
stresses (see chapter 3.2) 
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2.1    Standard modal analysis 

2.1.2 Example 

A long, slim drive shaft  

• Steel shaft length 500 mm, 
diameter 13 mm 
(E=190 GPa, =0.3, =7.85g/cm3) 

• Simply supported 

• 1st fundamental frequency:  
f0  100 Hz 

 

Analysis as  

1. simple 2 p-beams model  
(=much faster) 

2. volume model with help of a 
mapped mesh 
(=better visualization of results) 

• Request for mass-normalized 
displacement output: 
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2.1    Standard modal analysis 

2.1.2 Example 

Modal analysis results: 

Beam model (2 p-beams only!):         Volume model (420 p-solids): 

(CPU time 0.47 s)         (CPU time 150.45 s) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Modes with same frequency, respectively, occur because of the rotational 
symmetric structure (bending may appear in any lateral direction)! 
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Rigid body mode (shaft rotation) 

1st bending mode 

 

2nd bending mode 

 

3rd  bending mode 

 

4th bending mode 

 

axial “pumping” 

5th bending mode 

 

1st torsional 

6th bending mode 

 

7th bending mode 

 

2nd torsional 

8th bending mode 
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2.1    Standard modal analysis 

2.1.2 Example 

Mode shapes (with mass normalized displacement output!) 
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Virtual shaft thickness increase under torque just 
because of linearized theory and displacement scaling! 

1st  2nd  3rd  4th  

5th  1st 
torsional 

2nd 

torsional 
  

1st axial 
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2.1    Standard modal analysis 

2.1.2 Example 

Modal von Mises stress (always computed for mass normalized displacement output!) 
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2.2    Modal analysis with prestress 

2.2.1 Introduction 

• Allows to take into account fundamental frequency 
changes from preloads: 

 Tensile stresses in slim structures increase the 
fundamental frequency (e.g. a music instrument 
string or a turbine blade under centrifugal loads) 

 Compression stresses in slim structures decrease 
the fundamental frequency 

 Bending preloads do not significantly change 
fundamental frequencies, since tensile and 
compressive stress loaded regions of the structure 
are balanced and compensate each other 

• Basis of a modal analysis with prestress is a linear 
static analysis that defines the preloaded state created 
by the preload force {𝐹𝑃}. From this preloaded state, 
the stress stiffness matrix [𝐾𝜎] is computed for each 
integration point of each element 

• The modal analysis with prestress then solves the 
following equation: 

 

• Note that unlike in a Creo Simulate static analysis with 
prestress, the static prestress cannot be combined 
with dynamic stress in subsequent dynamic analysis 
output! 
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Note the force applied in the 

previous static analysis defining the 

preloaded state can be optionally 

scaled, so it does not need to be 

re-run if another preload is applied! 
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2.2    Modal analysis with prestress 

2.2.2 Relationship with other analyses taking into account preloads 

• Linear buckling analysis (“Eigenvalue buckling”): It is 
also based on a previous static analysis defining the 
preloaded state, but solves the equation: 

 

  is also called the “buckling load factor” BLF 

 The linear buckling analysis does not take into 
account large displacements (it is assumed that the 
geometry is not significantly changing under load), 
so no tangential stiffness matrix 𝐾𝑇 = 𝐾 + 𝐾𝜎 + 𝐾𝐿 
with 𝐾𝐿 as stiffness matrix for large displacements is 
taken into account [5] 

• Static analysis with prestress: 
 
 
Like the modal analysis with prestress, this analysis 
takes into account weakening or stiffening effects from 
preloads! 

 Both preload analyses may fail with the misleading 
error message “insufficiently constrained”, if the 
applied preloads are above the critical buckling load! 

 Static analysis with prestress outputs raw stresses 
and no superconverged stresses [9], so unlike in all 
other analyses in the postprocessor you can smooth 
these stresses (unsmoothed raw stress output allows 
to check for meshing quality) 
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2.3 Hints for application 

• Mass normalization can be requested via config.pro- 
option “sim_massnorm_modes” or with the engine  
command line option “-massnorm” 

• With the “plotting grid” setting the RAM and hard disk resource  
consumptions can be highly influenced: E.g. for volume structures 
with no interest in a detailed stress computation in a later dynamic  
analysis, a plotting grid of 2 is sufficient!  
(for beam models, a high plotting grid up to 10 should be used!) 

• Also note requesting modal stress in the modal analysis needs a lot of RAM, so huge 
system models running into memory limits in the modal analysis may successfully 
run with deactivating the modal stress request 

• If a static analysis fails with the error message “insufficiently constrained”, the rigid 
mode search in a constrained modal analysis can be successfully used for detecting 
the under constrained part or degree of freedom of the model (pretty useful for big 
system models with many parts/subassemblies). 
Remark: If the modal analysis fails with the same error message even though, the 
reason is usually a free rotating point of the structure (e.g. a spring end point)! 

• A modal analysis may also be used for checking mechanism modes, so for assuring a 
correct force flow in a static analysis! 

• Measurement points should be defined before meshing (e.g. use hard point Auto 
GEM control or directly define the measure before meshing of the modal analysis 
model) – otherwise, the mesh cannot be reused in the subsequent dynamic analysis 
and the modal analysis has to be performed again! 
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3.1 Classification of the supported dynamic analysis types 
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3. Dynamic Analysis 

Periodic system (steady state)  Transient system 

Exact 
excitation 
function 
(deter-
ministic) 

Dynamic frequency analysis: 
Only harmonic excitation 𝐹 = 𝐹 cos 𝜔𝑡 + 𝜑  - 
neglecting transient effects - is present; the force is 

applied as function of frequency (𝑓 =
𝜔

2𝜋
) and all 

results are evaluated in the frequency domain 

Dynamic time analysis: *) 
The excitation function is accurately known and 
applied as function of time; the solution is done in 
the time domain 

Stochastic 
excitation 

Random response analysis: 
The forcing function is obtained by statistical means 
(usually with help of measurements) and applied 
typically as acceleration density function 
(=acceleration density vs. frequency) 

Dynamic shock analysis: **) 
The excitation force typically is a short random 
excitation (e.g. earthquake, pyrotechnic shock), for 
which an SRS (shock response spectrum) has to be 
computed as input for the FEM analysis. The 
analysis just offers an image of the “worst case” 
state with low computational effort! 

Periodic system (steady state)  Transient system 

Exact 
excitation 
function 
(deter-
ministic) 

Dynamic frequency analysis: 
Only harmonic excitation 𝐹 = 𝐹 cos 𝜔𝑡 + 𝜑  - 
neglecting transient effects - is present; the force is 

applied as function of frequency (𝑓 =
𝜔

2𝜋
) and all 

results are evaluated in the frequency domain 

Dynamic time analysis: *) 
The excitation function is accurately known and 
applied as function of time; the results are 
evaluated in the time domain 

Non-
deter-
ministic 
excitation 

Random response analysis: 
The forcing function is obtained by statistical means 
(usually with help of measurements) and applied 
typically as acceleration density function 
(=acceleration density vs. frequency) 

Dynamic shock analysis: **) 
The excitation force is typically a short random 
excitation (e.g. earthquake, pyrotechnic shock), for 
which an SRS (shock response spectrum) has to be 
computed as input for the FEM analysis. The 
analysis just offers an image of the “worst case” 
state with low computational effort! 

• Depending on the forcing function {F} on the right side of the differential equation (DEQ), four 

different linear dynamic analysis types are supported in Creo Simulate: 

 

 

 

 

 

 

 

 

 

 

 

 

 

*)  Of course, in a dynamic time analysis also a harmonic excitation function can be applied, but 

 unlike in dynamic frequency analysis, which just regards the particular solution of the DEQ, 

 also the transient state will then be computed (homogeneous solution) before the steady state 

 is reached 

**) Strictly speaking, a dynamic shock analysis can be performed for any type of excitation for 

 which an SRS can be obtained (e.g. also deterministic functions like half sine shocks, impulse 

 functions, even harmonic excitation), but often it is performed for the mentioned transient 
 examples 
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3.2    Dynamic time analysis 

3.2.1 Introduction 

• The dynamic time analysis is the 
most universal and most simple to 
understand dynamic analysis in 
Creo Simulate, but also the 
computationally most intensive 

• If other dynamic analyses fail for 
certain coding limitations, it is a 
good idea to try this analysis type! 

• Nearly any arbitrary force vs. time 
function can be applied, either 

 in form of any analytic 
function like e.g. 

𝐹 = 𝐹 cos 𝜔𝑡 + 𝜑   
(for all programmable 
functions, see right) 

 or as a tabular function (e.g. 
as file input from a given 
force-vs.-time 
measurement) 

• Alternatively, any base point 
(interface) acceleration can be 
defined in a similar way 

 

22 

3. Dynamic Analysis 

External file 
data import 

Selection between base point 
excitation or external force 
excitation (=“load functions”) 

Default time-dependent function 
for dynamic time analysis is the 
impulse function (“Dirac-impact” 
of infinite short impact duration) 
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3.2    Dynamic time analysis 

3.2.2 Examples 

A half sine base point acceleration shock 

• We want to apply a half sine wave shock 
with 50 g peak acceleration and 10 ms 

duration (𝑓 =
1

𝑇
=

1

20 𝑚𝑠
= 50 𝐻𝑧) 

• The required analytic expression takes 
advantage of the “if”-function shown right 

• Correct coding can be checked by 
graphical visualization of the function  
 

A base point step (jump) function 

• We want to apply a 1 g step function for 
time t=0  

• Very simple to code like shown right 

• Always note the constant scale factor and 
units in the analysis definition dialogue! 
 

A harmonic sine excitation 

• We want to apply a force of 10 N with 
f=100 Hz, starting with 0 N at t=0 
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3.2    Dynamic time analysis 

3.2.2 Examples 

A long, slim drive shaft with unbalance operated at 
its resonance frequency (100.3 Hz) 

• Example model of chapter 2.1.2 

• Rotational speed 6000 rpm (100 Hz) 

• Modal damping 2 % 

• Static unbalance mass u=1 gram at unbalance 
radius 6.5 mm in the middle of the shaft (no 
dynamic unbalance assumed in the example, but 
this would be simple to simulate, too) 

 

Questions of interest: 

• How big is the displacement (shaft bending) 
under this operating condition? 

• How big is the max. shaft acceleration due to 
vibration created by the unbalance? 

• How long does it take until the shaft swings up? 

• Are the stresses in the shaft still low enough so 
that it can be safely operated even though it is 
running in resonance? 

• Is the foreseen balancing quality G sufficient, e.g. 
to obtain the required swinging velocity? 
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U = unbalance u.r [g mm] 
u = unbalance mass 
r  = unbalance radius of u 
m = total mass of the rotor 
e  = excentricity of m 
  = angular velocity 
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3.2    Dynamic time analysis 

3.2.2 Examples 

Before we run the dynamic time analysis, let’s see what we 
can do with some simple estimations and the information 
we already have: 

• Unbalance force: 𝐹𝑢 = 𝑢 ∙ 𝑟 ∙ 𝜔2 = 2.566 N   

• Static deformation under this force: 0.025 mm 
(obtained in a simple, linear static analysis shown right 
or with help of a formulary) 

• Magnification factor for the given damping: 
Q=1/2=25 

• Therefore the expected deformation at 6000 rpm  
(very close to the resonance peak) will be:  
 0.625 mm 

• From the modal analysis of chapter 2.1.1 we know that 
the modal von Mises stress is 3019 MPa for a mass 
normalized displacement of 61.95 mm 

• Since with the central unbalance force at 100 Hz we 
predominantly excite just the first mode, we can 
estimate the real stress by scaling the modal stress 
from mode 1 to the estimated displacement of  
0.625 mm by rule of three: We obtain approx.  
30 MPa in resonance from this! 

25 

3. Dynamic Analysis 

MPax
mm

mm

MPa

MPax
30

95.61

625.0

3019




Rev. 1.2 | 07.04.2017 

3.2    Dynamic time analysis 

3.2.2 Examples 

Setting up the dynamic time analysis 

• The 100 Hz rotating unbalance is defined by 
using a sine and a cosine forcing function as 
time dependent functions for the two unit 
forces applied under 90 °, respectively 
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𝐹𝑢 = 𝑢 ∙ 𝑟 ∙ 𝜔2 Cosine function for 100 Hz 
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3.2    Dynamic time analysis 

3.2.2 Examples 

Displacement animation [mm] of the swing up process (scale 100:1, 0.5 s duration) 
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max. displacement 0,61 mm 
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3.2    Dynamic time analysis 

3.2.2 Examples 

Von Mises stress animation [MPa] of the swing up process (scale 100:1, 0.5 s duration) 
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max. von Mises stress 29.62 MPa 
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3.2    Dynamic time analysis 

3.2.2 Examples 

Measures for displacement magnitude [mm] (left) and Y-acceleration [g] (right) 
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3.2    Dynamic time analysis 

3.2.2 Examples 

Using the dynamic analysis output functionality 

• Dynamic analysis can typically be computed 
with automatic output or user defined output 
steps 

 For the first case, only measures are output 
and the code automatically assures a 
suitable (time or frequency) stepping 

 Since there are no system default measures 
for dynamic analysis, the user always has 
to define measures before a dynamic 
analysis with automatic steps (better 
already before the modal analysis) 

 For user-defined output, the user can 
select stepping and request full results 
(=colorful PP images) for all or only those 
steps of certain interest 

• Often it is a good idea to run the first analysis 
with automatic output (and meaningful 
measures!) and then run a second analysis with 
user defined output for further evaluation 

• We will subsequently explain this at the shaft 
example 
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3.2    Dynamic time analysis 

3.2.2 Examples 

Animating only the particular solution of the DEQ for 
the unbalanced shaft in a dynamic time analysis 

• The measurement output for e.g. the Y-
acceleration shows that the system has practically 
reached its steady state at the end of the 
computed time span of 0.5 s 

 So we will request full output now just for the 
last period of the analysis, this can then be 
repeatedly displayed in the postprocessor  
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3.2    Dynamic time analysis 

3.2.2 Examples 

Von Mises stress animation [MPa] of the steady state (scale 100:1, one period of 0.01 s) 
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3.3    Dynamic frequency analysis 

3.3.1 Introduction 

• The dynamic frequency analysis computes the 
structure’s responses to pure harmonic 
excitation (cosine/sine function with one 
frequency at the same time) and disregards any 
homogeneous solution (transient oscillation); 
just the steady state (particular solution) is taken 
into account 

• So for a given excitation frequency 𝑓 = 𝜔/2𝜋, the 
exciting force (if force excitation is present) has 
the following form: 

 

• The amplitude 𝐹𝑚𝑎𝑥 and phase 𝜑 of the excitation 
vs. frequency function can be input by analytic 
functions or as tabular input (in analogy to the 
tools used in dynamic time analysis) 

• Like in dynamic time analysis, in addition to load 
functions also base excitation is supported 

• A typical application is a sine sweep test with a 
very low sweep rate (strictly speaking: an 
infinitely low sweep rate!) 
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)cos()( max   tFtF

Default amplitude 
function for dynamic 
time analysis is the 
uniform function (no 
change of amplitude vs. 
frequency) 

Default phase function is Zero 

The independent variable in dynamic 
frequency analysis is the frequency 
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3.3    Dynamic frequency analysis 

3.3.2 Examples 

0.5 g constant base point acceleration in X 
between 10 and 2000 Hz (sine sweep) 

• Very simple to define, see right 

• Note the possibility to request output 
relative to “ground” or “supports”-option 
for base point excitation! 
 

10 mm frequency independent (constant) 
base point displacement amplitude 

• We have to define a frequency dependent 
acceleration function for this as shown 
below 
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Important to activate for non-constant tabular 
input only, otherwise the automatic frequency 
stepping generator misses those frequencies! 
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3.3    Dynamic frequency analysis 

3.3.2 Examples 

A long, slim drive shaft with unbalance 
operated at its resonance frequency 
(100.3 Hz) 

• Example model of chapters 2.1.2  
and 3.2.2: 

 Nominal rotational speed  
6000 rpm (100 Hz) 

 Modal damping 2 % 

 Static unbalance mass  
u=1 gram at an unbalance  
radius of 6.5 mm in the  
middle of the shaft  

• In addition, we also want to know 
the response of the shaft vs. 
frequency between 0 and 2000 Hz 

• Necessary analysis definition is 
shown on the right side 

• Additional analysis with full output 
request at the fundamental 
frequencies for results animation 
within the postprocessor 
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3.3    Dynamic frequency analysis 

3.3.2 Examples 

Frequency response curve for displacement magnitude of the central shaft point 

•   
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3. Dynamic Analysis 

First bending mode at 103 Hz: 
0.62 mm (same result as in 
dynamic time analysis!) 

Third bending mode at 896 Hz 

No magnification at the second (400 Hz) and fourth 
(1584 Hz) bending mode, since the excitation force is 
applied to a nodal point of these modes! 
Note: The frequency stepping generator automatically 
refines stepping around the resonances! 



Rev. 1.2 | 07.04.2017 

3.3    Dynamic frequency analysis 

3.3.2 Examples 

Von Mises stress animation [MPa] for 100 Hz (scale 100:1) 

•   
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3. Dynamic Analysis 

Comparison of elapsed times: 
Dynamic frequency analysis requesting full output for 7 frequencies: 5.71 s 
Dynamic time analysis with full output just for the steady state at 100 Hz: 224 s 
Dynamic time analysis for the complete swinging up process at 100 Hz: 664 s 
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3.3    Dynamic frequency analysis 

3.3.2 Examples 

Von Mises stress animation [MPa] for 896 Hz (scale 100:1) 

•   

38 

3. Dynamic Analysis 



Rev. 1.2 | 07.04.2017 

3.3    Dynamic frequency analysis 

3.3.2 Examples 

Von Mises stress animation [MPa] for 2454 Hz (scale 50:1) 

•   
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3.3    Dynamic frequency analysis 

3.3.3 Remarks for application 

Note SPR 2875703 when evaluating dynamic frequency results in the postprocessor: 

• Unfortunately, it may happen that the phase result is not taken into account correctly 
in the postprocessor. In latest tests the following occurred: 

 Displacement, velocity and acceleration magnitude fringe plots just give correct results 
when animated, but wrong when not! 

 Displacement, velocity and acceleration component fringe plots just give correct results 
when not animated (but never the “Max. Disp.” value display as shown below) 

• Be also careful when evaluating other results (phases…) 
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Wrong fringe 
color coding 
during animation 

Correct colors 
during animation 

Correct colors 

Phase not taken into 
account when vector sum 
of Y- and Z-displacement 
is computed 
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3.3    Dynamic frequency analysis 

3.3.3 Remarks for application 

Note SPR 2875703 when evaluating dynamic frequency results in the postprocessor: 

• Furthermore, to obtain a “smooth” animation, use as many frames n as possible 
(>20), since the PP erroneously divides the deformed shape by n-1 (=first and last 
frame have identical shape; this error can be reduced by using many frames!) 

• In general, do not activate deformed shape without activating animation for dynamic 
frequency analysis results evaluation (this results in a meaningless shape just taking 
into account the amplitude maximum in positive coordinate direction, but no phase) 
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Frame 1 
Frame 2 

Frame 3 Frame 4 = 
Frame 1 
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3.4    Random response analysis  

3.4.1 Introduction 

• Until now, we have just looked at excitations where the excitation of the structure 
can be predicted for any time t with help of a deterministic mathematical function 

• In reality, we have also excitations for which an accurate input prediction in a 
deterministic sense cannot be done. Examples for this may be 

 Jet or rocket engine noise 

 Turbulent fluid flow 

 Ground acceleration during an earthquake 

• Such excitations are described with statistical methods, and usually a lot of 
measurements of the excitation in the time domain must be done, evaluated and 
edited in order to obtain a reliable acceleration or force spectral density function 

 For more details, refer to suitable technical literature 

• With this random response spectrum finally on hand, the code computes in this 
analysis type the answer of the mechanical structure when subjected to this 
excitation 

• In probably >90% of the application cases this will  
be an acceleration spectral density function introduced  
into the structure’s base points, exemplarily shown right 
(note also force excitation is supported in Simulate) 

• In the following chapter we will therefore exemplarily  
describe how this works with help of a simple one-mass- 
resonator, for which an analytical solution exists 

42 

3. Dynamic Analysis 

t 
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3.4    Random response analysis 

3.4.2 Examples 

Base point excitation of a one-mass-oscillator with white noise: 

• Given is a white noise acceleration density spectrum with a constant acceleration 
density of Win=0.2 g2/Hz for 1-2000 Hz 

• The effective input acceleration is the square root below the acceleration density 
curve, also called RMS- (root mean square) or 1-acceleration: 
 
 

• With help of the Miles formula (valid for ideal white noise  
with an infinite frequency span from 0 Hz to  Hz!) 
 
 
we obtain for a resonator with Q=25 (=2 %) and a  
fundamental frequency of 700 Hz the 1-output acceleration: 

 

 

• If the momentary values of the output are Gauss distributed, the expected peak value 
is usually defined as the 3 value, which means that only 0.3 % of the momentary 
values of the output acceleration are greater than 222,5 gRMS, and that for 99,7 % of 
the time the acceleration is below! 

• This 3-value is typically used for estimation of the max. resonator acceleration and 
therefore for evaluating the risk of forced rupture, even though 0.3 % of the peak 
values are not covered: Practical experience shows this usually works fine! 
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3.4    Random response analysis 

3.4.2 Examples 

Base point excitation of a one-mass-oscillator  
with white noise: 

• Oscillator properties: 𝑚 = 4 𝑘𝑔, 𝐾 = 77377.7 𝑁/𝑚𝑚 

• Fundamental undamped frequency: 

𝑓0 =
1

2𝜋

𝐾

𝑚
 = 700 Hz 

• With 2% damping: 𝑓 = 𝑓0 1 − 𝛽2 = 699.86 𝐻𝑧 

 

• Note: The bandwidth B for harmonic excitation (see 
chapter 1.3) and the “effective bandwidth” 𝐵𝑒𝑓𝑓 for 
white noise excitation are related as follows: 

 

 

• So we obtain for harmonic excitation 𝐵 = 28 𝐻𝑧 and for 
white noise excitation 𝐵𝑒𝑓𝑓 = 44 𝐻𝑧 
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3.4    Random response analysis 

3.4.2 Examples 

Measure definitions 
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3. Dynamic Analysis 

Measures to 
compute the 
acceleration 
density function 
of resonator 
and base (for  
PP evaluation) 

Measures to 
compute the 
acceleration 
distribution 
function of 

resonator and 
base (for  

PP evaluation) 

Measures to 
compute the 
effective 
acceleration 
of resonator 
and base 
(gRMS-value, 
output in the 
engine 
report-file) 
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3.4    Random response analysis 

3.4.2 Examples 

Fringe plot and report file results 
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3. Dynamic Analysis 

Fringe plot 
of the local 
gRMS-value 
distribution 

196150.9 mm/s2 = 19.995 g 

739829.1 mm/s2 = 75.4158 g 

gRMS measure output in the 
engine report: 
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3.4    Random response analysis 

3.4.2 Examples 

Measure results for automatic frequency stepping 
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3. Dynamic Analysis 

acceleration density 
function p of the base 

acceleration distribution 
function P of the base 

acceleration density 
function p of the resonator 

acceleration distribution 
function P of the resonator 

Refined output 
with manual 

stepping 
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3.4    Random response analysis 

3.4.2 Examples 

Bandwidth results in comparison to harmonic excitation 
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3. Dynamic Analysis 
Bandwidth B: The power to 

maintain the oscillation 
grows with the square of the 

amplitude and is at the 
border of the bandwidth 

approximately half of the 
max. resonance power  

25
2

1



Q

7,17
2


Q

Hz
Q

f
fB 282 0

0  

HzBBeff 44
2




Random excitation Harmonic excitation with 1 g input 
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3.4    Random response analysis 

3.4.3 Remarks for application 

• Always define suitable measures at a base point to 
check if the given input acceleration density was 
correctly applied! 

• Take care of output settings (relative to ground or 
supports)! 
Note: Output relative to supports means that the 
results are expressed in what an observer sitting on 
a base point (=support) sees when looking at the 
excited structure, but not what he feels! 

• The automatic frequency stepping generator may 
be fooled out if the lower frequency bound is 
requested to be 0 Hz, better use e.g. 1 Hz. 
Otherwise, it may happen that a finer stepping 
around the natural mode(s) does not correctly  
take place! 

• Therefore, always check stepping of the output 
acceleration around the resonance frequencies with 
a suitable measure 

• Do not forget to toggle on “Use frequency steps 
from table function” for non-uniform random 
spectra to accurately capture function values at 
these frequencies 
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3.5    Dynamic shock analysis 

3.5.1 Introduction 

• Dynamic shock analysis significantly differs from the other 
three supported dynamic analysis types: At first sight the 
user can observe that neither force excitation, nor any 
modal damping  can be defined! 

• The reason is that this analysis type only computes a single 
image of the expected “worst-case” structural response 
with help of a given SRS (Shock Response Spectrum), in 
which damping already is included (this analysis type does 
not provide any animations like e.g. dynamic time analysis!) 

• An SRS is defined as the maximum response of an SDOF 
(Single Degree Of Freedom) system with a given damping  
and variable natural frequency to base point excitation. 

• So first, prior to the dynamic shock analysis, an SRS has to 
be computed by the user for the existing base point 
excitation (described on the next slide) 

 

What is the advantage of dynamic shock analysis? 

• Very low computational resources required (=very quick), 
since the DEQ does not need to be solved again! 

• The evaluation of the shock spectra for different excitation 
functions allows to judge immediately which excitation 
creates the worst-case loads! 
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Remark: Dynamic shock 
analysis was proposed for 
the first time in 1932 in the 
doctoral thesis of the 
Belgian-American scientist  
Maurice Anthony Biot 
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3.5    Dynamic shock analysis 

3.5.1 Introduction 

• The process to generate an SRS for 
a given base point excitation is 
depicted in the right image 

• The SRS can be expressed in 
displacements 𝑑 (shown right), 
“pseudo-velocity” 𝑣 or “pseudo-
acceleration” 𝑎 vs. 𝑇0 or better, as 
required in Simulate, vs. 𝑓0 

• These spectra are linked by the so 
called “spectra response relation”: 

 

• Important: When computing the 
SRS, note the different required 
output references [3]: 

 Displacements: relative 
supports 

 (Pseudo-)acceleration: rel. 
ground 

 Pseudo-velocity: has to be 
computed by the spectra 
response relation from  
𝑠𝑑 or 𝑠𝑎 

 

51 

3. Dynamic Analysis 

G
iv

e
n
 b

a
s
e
 p

o
in

t 
e
x
c
it

a
ti

o
n
 f

u
n
c
ti

o
n

 
D

is
p
. 

re
s
p
o
n
s
e
 o

f 
th

e
 S

D
O

F
 s

y
s
te

m
 w

it
h
 

v
a
ry

in
g
 e

ig
e
n
fr

e
q
u
e
n
c
y
 t

o
 t

h
e
 b

a
s
e
 

e
x
c
it

a
ti

o
n
 (

s
h
o
w

n
 f

o
r 

th
re

e
 T

0
 e

x
a
m

p
le

s
) 

O
b
ta

in
e
d
 S

R
S
, 

s
h
o
w

n
 i
n
 

m
a
x
. 

d
is

p
. 

v
s
. 
n
a
tu

ra
l 

v
ib

ra
ti

o
n
 p

e
ri

o
d
 T

0
 

(t
y
p
ic

a
ll
y
, 

th
e
 S

R
S
 i
s
 

e
x
p
re

s
s
e
d
 i

n
 a

c
c
e
le

r-
a
ti

o
n
 r

e
s
p
o
n
s
e
 a

  
v
s
. 

e
ig

e
n
fr

e
q
u
e
n
c
y
 f

0
) 

Note damping  
is included here! 

dva sss 2 



Rev. 1.2 | 07.04.2017 

3.5    Dynamic shock analysis 

3.5.1 Introduction 

Modal superposition method 

• For independent SDOF-systems, the dynamic shock analysis 
always delivers per definition an accurate answer (since the 
response spectrum was created with such a system) 

• Unfortunately, for real MDOF systems this is not the case! 

• Indeed, the dynamic response of a linear elastic MDOF 
system can be expressed as linear combination of its 
fundamental modes, but the information at which time the 
modes answer with their maximum, respectively, is lost 
during the creation of the shock response spectrum 

• So two pragmatic (empirical) approaches are offered in 
Simulate to compute the maximum structural response: 

 The modes are simply combined with their absolute sum: 
 very conservative approach, since in reality the modes 
do not answer with their maximum at the same time 

 “Square Root of the Sum of the Squares”  (averaged 
superposition, expected to be more realistic) 

• For this superposition, the individual max. modal response 
magnitude is read out from the shock response spectrum, 
and of course the individual mass participation factors are 
taken into account (base point excitation!) 

• For more details about dynamic shock analysis, see [1-3] 
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≠ 

independent SDOFs real MDOF system 
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3.5    Dynamic shock analysis 

3.5.2 Examples 

• A shock response spectrum can be obtained in several different ways, e.g. 

 From Literature (typically normalized diagrams are given) 

 By rules and standards (e.g. for civil or military engineering) 

 With help of a Creo simulate global sensitivity study 

 With Mathcad as shown in [7], [8] 

 By other suitable software 

 … 

• In [3], a method is shown how to use the Simulate global sensitivity study for this: 

 Create a simple SDOF model with just a point mass and a discrete spring 

 Enter the base excitation function of interest in a dynamic time analysis, also enter the 
damping present in the real structure you want to compute afterwards 

 Define a measure for the max. system response over the complete analysis time  
(use max. displacement output rel. supports, or max. acceleration relative ground, but 
do not use a max. velocity response measure; see also [3], p. 23!) 

 Define a property parameter to vary the fundamental frequency of the SDOF system (i.e. 
spring stiffness or mass)  

 Sweep this parameter in a global sensitivity study referencing the dynamic time analysis 
in a way that the complete frequency span is covered for which you need the SRS.  
Note: For practical reasons, you may need more than one analysis with different step 
width and edge frequencies for this, since at lower frequencies you have less sample 

points (f~ 𝐾) 

 After the study, draw the max. displacement or acceleration response measure vs. SDOF 
frequency (MS EXCEL) – this is the SRS you need! 
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3.5    Dynamic shock analysis 

3.5.2 Examples 

• By following this procedure, you should obtain the following shock response 
spectrum for an acceleration half sine shock of 50 g, 6 ms duration ( f=83.3 Hz) 
and no damping, see [3] 
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3.5    Dynamic shock analysis 

3.5.2 Examples 

• Now, take this spectrum and import it into the response 
spectrum form sheet of the dynamic shock analysis 
definition dialogue 

• Run the dynamic shock analysis e.g. with the 700 Hz-
SDOF-system used in chapter 3.4 

• A max. relative displacement result of 0.028 mm will be 
computed (see next side left). Note: Displacement output 
in a Simulate shock response analysis is always given 
relative to supports, never relative to ground! 

• Run two dynamic time analysis for cross-checking: One  
relative to ground and one relative to supports, with the 
measures shown below – you should obtain similar 
results (units mm, t, s) 

• For an SDOF-system, you can simply compute the max. 
acceleration out of the shock analysis displacement result 
with help of the spectra response relation (see next slide)  
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Remark: Using the spectra response relation for velocities may deliver a very inaccurate result compared to 

the real rel. velocity, see also [3]: 𝑣𝑚𝑎𝑥 = 𝜔 ∙ 𝑑𝑚𝑎𝑥 = 2 ∙ 𝜋 ∙ 700𝐻𝑧 ∙ 0.027995 𝑚𝑚 = 123.1 
𝑚𝑚

𝑠
≫ 25.97 

𝑚𝑚

𝑠
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3.5    Dynamic shock analysis 

3.5.2 Examples 

• Response comparison of the 700 Hz SDOF-resonator for the different analysis types 
(50 g, 6 ms half sine shock, =0) 
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3. Dynamic Analysis 

Displacement response from 
a dynamic time analysis 
relative to supports  

Acceleration response from 
a dynamic time analysis 
relative to ground 

Displacement result of the 
dynamic shock analysis 

 max. -2.798673e-02 

max. 55.187 g 

Alternatively, use the 
spectra response relation: 

𝑎𝑚𝑎𝑥 = 𝜔2 ∙ 𝑑𝑚𝑎𝑥 
= 2 ∙ 𝜋 ∙ 700 𝐻𝑧 2

∙ 0.027995 𝑚𝑚 = 55.2 𝑔 
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3.6    Examples for dynamic analyses of big system models 

• For Zero-G experiments, Airbus DS in Bremen develops various payloads for the ESA 
MAXUS and TEXUS sounding rockets 

• Such experiment platforms are subjected to very high dynamic loads during launch 
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Movie of a MAXUS  
rocket launch  

(Kiruna, Sweden) 

MAXUS & TEXUS ballistic sounding missiles  
simplified flight profile 
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• PERWAVES: An experiment that examines combustion processes in Zero G environment 

• This experiment contains mechanisms and several fragile glass tubes: Their resistance 
against various flight & operational loads had to be proved 

 

 

 

3.6    Examples for dynamic analyses of big system models 
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3. Dynamic Analysis 

Mode 1 
showing 
elastic 
experiment 
support for 
dynamic load 
decoupling 

Mode 8 showing 
turn drive/ 
carousel 
oscillation 
(uncritical, since 
not excited over 
the interface!) 
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3.6    Examples for dynamic analyses of big system models 

• GRADECET – A high temperature furnace that melts metallic specimens at 1700 °C and 
recrystallizes them convection free in Zero-G environment on MAXUS flights 

• Improvements had to be found and analyzed to reduce dynamic random loading within 
the heating section 
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3. Dynamic Analysis 

Specimen 

1-displacement response of initial (left) and improved design (right) Exemplary harmonic excitation of the first 
mode of the tantalum “finger”, covering a 

ceramic tube around the specimen 
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3.6    Examples for dynamic analyses of big system models 

• Computation of the force transfer functions of a tire test rig for high speed 
uniformity measurements (HSU 5 from ZF Test Systems, Passau, Germany) 
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3. Dynamic Analysis 

Animation shows 
system response 
at the first lateral 
eigenfrequency  
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3.6    Examples for dynamic analyses of big system models 

• Behavior of a new ZF highly-dynamic half axis test rig in hexapod architecture 
 One goal of the examination was to estimate the response function for harmonic pulsing of the 

two tire load cylinders with an amplitude of 20 mm 

 This was done with help of the so called “seismic mass” concept 
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3. Dynamic Analysis 

System response for 
20 mm pulsing 

within the operating 
frequency (Scale 2:1) 

Response for 20 mm 
pulsing close to the 

system eigenfrequency 
(Scale 2:1) 
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3.6    Examples for dynamic analyses of big system models 

• Random response analysis of a thermal imaging system to compute optical surface 
displacements under specified acceleration spectral density (Hensoldt, Oberkochen)  
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3. Dynamic Analysis 
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3.6    Examples for dynamic analyses of big system models 

• Shock response behavior of an imaging system for visible and short wave infrared 
light (Hensoldt, Oberkochen)  
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4.1    Missing functionality & enhancement requests to PTC for dynamic analysis 

• Missing discrete damper: 

 add a linear, discrete damper that connects two points at least with 
a simple translational and/or rotational damping constant C 

• Missing support for rotating machinery: 

 Support gyroscopic effects in modal analysis: Whereas for slim 
rotors (e.g. the shaft example) this effect can be neglected, for 
massive, disk-shaped rotors (fly-, gearwheels) it is of fundamental 
importance for correct prediction of their rotordynamic behavior! 

 Support centrifugal softening (also called “spin softening”): This 
effect leads to a decrease of fundamental frequencies since the 
elastic stiffness K has to be replaced by the effective stiffness: 
𝐾𝑒𝑓𝑓 = 𝐾 − 𝜔𝑠

2𝑚  
(can be obtained by balancing spring and centrifugal force). 
This is of importance if the radial displacement u under centrifugal 
force cannot be neglected compared to the radius r (e.g. for fast 
spinning turbine blades). In case 𝐾 < 𝜔𝑠

2𝑚: Instability appears! 

• Improved functionality for dynamic shock analysis: 

 Support more modal combination methods from literature, like e.g. 
1st mode absolute, all higher modes as SRSS 

 Support not only displacement, but also velocity and especially 
acceleration fringe plots in the postprocessor (similar for measures) 

 Since translational excitation can just be defined in the world 
coordinate system, also support user-defined coordinate systems 
(Workaround: Assemble the model into a higher-level assembly 
with suitable orientation!) 
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4. Feedback to the software developer PTC 

𝐶𝑥  

m 

[Wikipedia] 

? 
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4.1    Missing functionality & enhancement requests to PTC for dynamic analysis 

• Better support of results superposition in the post processor: 

 Currently, results superposition is only supported within a 
single linear static analysis containing at least 2 load sets 

 It would be pretty useful if the user could superpose and scale 
results of (any) different analyses (even, although risky, any 
load step of a nonlinear analysis), as long as the models have 
similar geometry, mesh and plotting grid 

 This could e.g. allow to combine the static (constant) 
prestress state of a prestress modal analysis e.g. with the 
varying stress states of a dynamic time or frequency analysis 
based on a prestress modal analysis (enables mean- and 
deflection stress evaluation, which is currently not possible) 

• Missing measures: Unfortunately, several measures are not 
supported in various dynamic analysis types, like e.g.: 

 No phase output for spring forces in dynamic frequency 
analysis (workaround is using displacements and phase of 
displacements of the spring end points, but this is by far not 
accurate enough for very stiff springs!) 

 No constraint or resultant force/moment measure output in 
dynamic analysis at all 

 No velocity and acceleration output in dynamic shock analysis 
(just displacement and stress output, even for fringe plots!) 

 No support of any fastener measures in random response 
analysis 

 … 
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4.1    Missing functionality & enhancement requests to PTC for dynamic analysis 

• Improved support for analyzing very large system models: 

 Experience won in many industrial projects shows that the code works very fine for 
analyzing large CAD-assemblies (see chapter 3.6): The excellent CAD-FEM integration 
and associativity of the analysis model with the CAD model allows a very quick 
modification of the design which can immediately be re-meshed and re-analyzed in the 
p-FEM environment 

 Also all idealizations (beams, shells, springs, discrete masses, rigid and weighted links) 
are supported and are well suitable to decrease model size 

 However, the level of detail which can be taken into account in the model is usually 
driven by the modal analysis with the requested number of modes, the chosen plotting 
grid and the optional modal stress request. For big models, a lot of RAM is required so 
that the engine does not crash! 

 To decrease RAM resource consumptions, it would be useful that subsequent dynamic 
analyses (which typically need much less RAM compared to the modal analysis) can 
reference a series of modal analyses with split frequency band requests, respectively, 
e.g. from 0-1000 Hz, 1000-2000 Hz and 2000-3000 Hz, and not only one single 
modal analysis requesting all modes of the complete frequency domain (0-3000 Hz) 

 Multi-threading should be supported in dynamic analysis, too (in modal analysis, the 
code already addresses many CPU automatically). Until now, the user can only obtain a 
significant speed increase in dynamic analysis by using an SSD hard drive! 

• Implementation of superelements for model size reduction: 

 For very large system models, a submodeling technique would be very useful, that 
means certain subassemblies can just be represented as a “superelement” to decrease 
hardware resources and increase analysis speed 
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4.2    Known issues in dynamic analysis and possible workarounds 

Project work with the product uncovered the following issues to be fixed by PTC R&D: 

• SPR 4714483: Off-diagonal terms in the spring stiffness matrix of advanced springs 
lead to incorrect results in fundamental frequency computation (no workaround 
available, currently do not use off-diagonal terms at all!) 

• SPR 2875703: In dynamic frequency analysis with force excitation and phases 
between the exciting forces, wrong animations/PP plots for certain result components 
may appear (try with the shaft example in chapter 3.3.2 and compare with dynamic 
time results; you may use dynamic time analysis as workaround!) 

• SPR 2847768: In a random response analysis, Simulate may compute wrong von Mises 
stress hot spots (this may appear especially for very big system models) 

• SPR 2867898: Mixed models with shell-solid links may deliver wrong results in a 
modal analysis (locking appears especially at high p-levels). 
Workaround: Try to prevent shell-solid links by suitable modeling/meshing! 

• SPR 4461169: In a model containing thin solid elements (wedges and bricks); Simulate 
does not correctly detect rotational rigid body modes with standard settings in a 
modal analysis (wedges and bricks – unlike tetrahedrons - need very high p-levels to 
correctly detect rigid body modes at a frequency of zero!). Workaround: Use 
tetrahedrons or enforce high accuracy in the modal analysis to use high p-levels! 

• SPR 4967524: In a model containing variable thickness shells; msengine hangs up 
during mass calculation. Workaround: Replace variable thickness shells with volumes 
or with stepwise varying constant thickness shells! 
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