PTC CREO SIMULATE ENGINE UPDATES

Dr. Arun T. Chavan Senior Software Technical Consultant

March 28, 2017

- General improvements/fixes in simulate engine Engine fixes

 - Engine improvements
- Finite friction improvements

 Algorithm improvements
 Interface forces

 - Slippage measures
 - Slippage indicators
 - Local/full sliding messages
- SAXSIM16 model discussions
 - Brake system with infinite friction
 - Brake sýstem with finite friction
 - Flywheel axisymmetric model
 - Féedback
- Creo 5.0 Simulate Engine contact projects
- Conclusions

- General improvements/fixes in simulate engine Engine fixes

 - Engine improvements
- Finite friction improvements Algorithm improvements Interface forces

 - Slippage measuresSlippage indicators

 - Local/full sliding messages
- SAXSIM16 model discussions
 - Brake system with infinite friction
 - Brake system with finite friction
 - Flywheel axisymmetric model
 - Féedback
- Creo 5.0 Simulate Engine contact projects
- Conclusions

ENGINE FIXES

📚 ptc

- Performance with resistance elements.
- Temperature dependent materials.
- Integer overflow, engine crashes.
- Measure calculations for several load cases.
- Fastener measure issue for dynamic shock analysis.
- Mixed shell, solid + contact model constraint issues
- Advanced spring coupling stiffness matrix
- Contact model convergence
- Hyper-elastic, elasto-plastic analysis convergence Etc.

ENGINE IMPROVEMENTS

- Snap-though analysis improvements
 - Algorithm improvements
 - sim_snap_tolerance_factor (sf)
 - sf<1 requesting early start
 - sf>1 requesting delayed start
 - sf=1 default
- NL Solver updates
 - Tuning improvement for finite friction
 - Load displacement curve
 - sim_nl_ldc
 - Accuracy improvements
 - Poor
 - Medium
 - High

- General improvements/fixes in simulate engine Engine fixes

 - Engine improvements
- Finite friction improvements

 Algorithm improvements
 Interface forces

 - Slippage measuresSlippage indicators

 - Local/full sliding messages
- SAXSIM16 model discussions
 - Brake system with infinite friction
 - Brake system with finite friction
 - Flywheel axisymmetric model
 - Féedback
- Creo 5.0 Simulate Engine contact projects
- Conclusions

FINITE FRICTION IMPROVEMENTS

- NL Solver algorithm updates Better control on penetration Energy convergence improvement
 - Area/force convergence improvements
- Contact force measures calculation updates

 Contact interface load measure can be calculated from element stresses on user request
 Contact interface tangential force measure improvement
- Contact slippage indicator measure updates

 Any slippage
 Average slippage

 - Complete slippage
- Contact slippage indicator fringe plot updates Better many-to-few mapping Normalization

 - Sanity checks
- Contact message improvements

 In RPT file, for every interface, first occurrence of local/full sliding will be intimated
 In PAS file, for every interface, current state of local/full sliding will be intimated

FINITE FRICTION BASICS

- Friction plays an important role in number of our daily activities and in most industrial processes. Friction not only aids in starting the motion of body but also in changing its direction and subsequently stopping it
- FEM modeling of contacts with friction is of paramount importance for cases where one has to answer questions like:
 - Will sliding occur? When will it occur?
 - What kind of sliding occurs? Local sliding/Full sliding ? Or tipping?
- We will study different scenarios to validate the simulation results
 - Sticking
 - Sliding, and

• Tipping

The slippage at a given point \mathbf{x}_i then is $S_i = T - \mu \cdot N \leq 0$

The following measures are available measures for a contact interface:

- InterfaceName_force Resultant force
- InterfacName_tang_force Tangential force
- InterfaceName_load Normal force
- InterfaceName_any_slippage Maximum slippage
- *InterfaceName_complete_slippage Minimum* slippage
- Interfacename_average_slippage Average slippage
- InterfaceName_max_tang_traction Maximum shear stress

CASE STUDY 1: WHEN WILL SLIDING OCCUR?

Find the minimum angle required (θ) to initiate the sliding of a block on an inclined platform shown below and compare $Creo^{\mathbb{R}}$ Simulate result to analytical solution. Assume static coefficient of friction as 0.25, W = weight of the block = 100 N. The analytical solution of this case is, $\theta = \tan^{-1} \mu_s \cong 14^0$

Creo[®] *Simulate* result

Sr. No.	Measure	θ = 12 deg	θ = 14 deg	θ = 16 deg
1	Interface1_average_slippage	-1.393808e-03	3.421150e-03	1.416395e-02

ReactionZ_support: 9.396926e+01 ReactionZ_EnforcedConstraint: -1.070990e+01 ReactionZ_support: -2.349225e+01

CASE STUDY 2: WILL TIPPING OR SLIDING OCCUR?

A block is resting on large flat rough support.

Given $\mu_s = \mu_d = 0.25$, W=100N, P=22N. Will the block slide OR Tip?

 ΣF_z = ReactionZ_support + ReactionZ_EnforcedDisp + P = 0.18 - 22.18 + 22.0 = 0

 ΣF_y = ReactionY_support + W = 100.0 - 100.0 = 0

Interface1 is stuck, as:

- Measure any slippage is +ve
- Measure average slippage –ve

Interface1_any_slippage:	2.535085e+01
Interface1_area:	2.545647e-01
Interface1_average_slippage:	-1.583196e+00
<pre>Interface1_complete_slippage:</pre>	-3.860591e+01

ReactionMag_EnforcedDisp:	2.222372e+01
ReactionMag_support:	1.000098e+02
ReactionX_EnforcedDisp:	-1.390416e+00
ReactionY_EnforcedDisp:	0.000000e+00
ReactionY_support:	1.000000e+02
ReactionZ_EnforcedDisp:	-2.218018e+01
ReactionZ_support:	1.801813e-01

- General improvements/fixes in simulate engine Engine fixes

 - Engine improvements
- Finite friction improvements

 Algorithm improvements
 Interface forces

 - Slippage measures
 Slippage indicators

 - Local/full sliding messages
- SAXSIM16 model discussions
 - Brake system with infinite friction
 - Brake system with finite friction
 - Flywheel axisymmetric model
 - Féedback
- Creo 5.0 Simulate Engine contact projects
- Conclusions

SAXSIM 2016: SUMMARY OF ISSUES REPORTED

- Finite friction functionality does not work
 - Interface force measure results for SPA are wrong
 - Interface tangential force measure results are not accurate
 - Interface slippage indicator results are not synchronized with RPT/PAS messages
 - Interface slippage measure results are inaccurate
- Infinite friction SDA results are bad
- Engine accepts very loose residual norm
- Contact load measure in Creo 3.0 can not be used as mesh quality checking tool – Creo 3.0 calculates it from spring forces

 - Creo 2.0 calculates it from element stresses
- Symmetry constraint and preload scaling issues

- Infinite friction SDA analysis case

 When run with increased contact number of iterations (say 500), the Creo Simulate engine delivers interface force measure results that unreasonably jump after some time.
 A fix is found and will be shipped in next possible build
- The work around is to run LDA analysis with an adequate number of output steps (e.g. 11).
 To ensure the sum of contact normal forces is 9600N, user can create a user defined Interface force measure in WCS:X direction for pad_o and pad_u interfaces and add them.
- The Screenshots of related measure plots are shared in next slides

Forward looking information subject to change without notice © 2017 PTC

Forward looking information subject to change without notice © 2017 PTC

Copyright 1987-2017 © PTC Inc. All rights reserved. 16

BRAKE SYSTEM: FINITE FRICTION RESULTS

BRAKE SYSTEM: FINITE FRICTION RESULTS

Location: Contact Surfaces LoadsetLoadSet1: BRAKE_SYSTEM Step 3, Time 2.0000E-01

(MPa) Location: Contact Surfaces Loadset LoadSet1 : BRAKE_SYSTEM Step 2, Time 1.0000E-01

Forward looking information subject to change without notice © 2017 PTC

Copyright 1987-2017 © PTC Inc. All rights reserved. 18

30

24

BRAKE SYSTEM: FINITE FRICTION RESULTS

Resultant Load on Model: in global X direction in global Y direction in global Z direction	: n: 9.599973e+03 n: -1.443876e-02 n: -4.043298e-02	Frame_IF1_area: Frame_IF1_force: Frame_IF2_area: Frame_IF2_force:	3.850186e+02 2.830309e+02 6.000035e+02 1.682665e+03	pad_o_normal = $\sqrt{pad_o_f orce^2 - pad_o_t ang_f orce^2}$ pad_o_normal = $\sqrt{5031.62^2 - 1662.20^2} = 4749.14$
<pre>measures: contact_area: contact_max_pres: max_beam_bending: max_beam_tensile: max_beam_torsion: max_beam_total: max_disp_mag: max_disp_x: max_disp_y: max_disp_z: max_prin_mag*: max_rot_mag:</pre>	1.150560e+04 6.037768e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.001098e-02 1.436474e-03 6.361737e-04 -1.001062e-02 9.522586e+00 0.000000e+00	Frame_IF3_area: Frame_IF3_force: Frame_IF4_area: Frame_IF4_force: Frame_IF5_area: Frame_IF5_force: Frame_IF6_area: Frame_IF6_force: disp_sword: pad_o_any_slippage:	6.000036e+02 1.677305e+03 3.205742e+02 2.714507e+02 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e-02 2.089808e-01 4.700000e+02	Total normal force = pad_o_normal + pad_u_normal Total normal force = 9599.99 N $\mu_o = \frac{pad_o_tang_force}{pad_o_normal} = \frac{1662.20}{4749.14} = 0.35$ $\mu_u = \frac{pad_u_tang_force}{pad_u_normal} = \frac{1697.80}{4850.85} = 0.35$
max_rot_x: max_rot_v:	0.000000e+00 0.000000e+00	pad_o_area: pad_o_average_slippage:	4.109060e-04	Measure Definition × Name >> Details
max_rot_z:	0.000000e+00	pad_o_complete_slippage:	-1.846389e-01	Quantity Interface
max_stress_vm*:	9.420534e+00	pad_o_torce:	5.03161/e+03	Force Component
<pre>max_stress_xx*: max_stress_xy: max_stress_xz: max_stress_yy: max_stress_yz*: max_stress_zz: min_stress_prin: strain_energy: F_Z: Frame_FX: Frame_FY: Frame_FZ:</pre>	-3.489501e+00 2.293706e+00 2.489589e+00 6.127323e+00 5.278043e+00 -7.759696e+00 -8.878019e+00 4.145296e+00 -3.359932e+03 2.037907e-02 -1.157968e+01 3.359972e+03	<pre>pad_o_max_tang_traction: pad_o_tang_force: pad_u_any_slippage: pad_u_area: pad_u_average_slippage: pad_u_complete_slippage: pad_u_force: pad_u_max_tang_traction: pad_u_tang_force:</pre>	5.549103e-01 1.662197e+03 2.030510e-01 4.799998e+03 -1.818560e-03 -1.922959e-01 5.139379e+03 5.714244e-01 1.697796e+03	X Coordinate System Spatial Evaluation Interface Defined Reference Surface : BRAKE_SWORD.PRT Valid for Analysis Types Contact Analysis

IMPORTANT POINTS FOR FINITE FRICTION RESULTS

- 📚 ptc
- The contact force measures/slippage measures/slippage indicator calculations
 - are based on contact spring stiffness
 - are based on number of quadrature points (QPs)
 - In general, number of QPs on a given element interface face/interface edge are

dense (.) as compared to number of h-nodes (.)on that face/edge

- Contact indicator fringe plots are based on h-node grid
 - The mapping from QPs to h-nodes is many-to-few
 - This is deliberately done for performance reasons
 - May result in loss of information for coarse h-node grid
 - User can change h-nodes grid from Analysis dialog box
- Contact indicator magnitudes are normalized in range [-1,+1]
 - Red color is to indicate sliding
 - Green color is to indicate sticking

FLYWHEEL: FINITE FRICTION

Interface Definition Interface Definition X X **Measure Definition** Name Name Name >> Details 2 2 Kegel start Kegel gleiten Kegel start force X proj Quantity Туре Type Contact Contact - N -Interface References References Force Edge :
Individual
Intent Edge :
Individual
Intent Component Edge : AA01 285 700 ET001.PRT Edge : AA01_285_700_ET001.PRT Х Edge :
Individual
Intent Edge :
Individual
Intent Coordinate System Edge : AA01 285 693 ET001.PRT Edge : AA01 285 693 ET001.PRT ACS0 Properties Properties Spatial Evaluation Friction: Finite Friction: Finite Ŧ Ŧ Interface Create Slippage Indicators Create Slippage Indicators Defined Static Coefficient of Friction Static Coefficient of Friction 0.2 Reference Edge : AA01 285 700 I -0.2 Dynamic Coefficient of Friction Dynamic Coefficient of Friction Valid for Analysis Types Same as static Same as static * Contact Analysis Visible at higher assembly level OK Cancel OK Cancel OK Cancel Interface Definition X Measure Definition Interface Definition × x Name Name Name >> Details 2 2 Flansch_gleiten Flansch Kegel start force X Quantity Туре Туре - N Contact Interface Contact ÷ References References Force Edge :
 Individual
 Intent Edge :
 Individual
 Intent Component Edge : AA01_285_693_ET001.PRT Edge : AA01_285_700_ET001.PRT х Edge :
Individual
Intent Edge :
Individual
Intent Coordinate System Edge : AA01_285_700_ET001.PRT Edge : AA01_285_693_ET001.PRT Z STD AS CS Properties Properties Spatial Evaluation Friction: None Friction: None Ŧ \mathbf{v} Interface Create Slippage Indicators Create Slippage Indicators Defined Static Coefficient of Friction Static Coefficient of Friction Reference Edge : AA01 285 700 -Dynamic Coefficient of Friction **Dynamic Coefficient of Friction** Valid for Analysis Types STD CS Same as static Same as static * Contact Analysis Visible at higher assembly level OK Cancel OK Cancel OK Cancel

Forward looking information subject to change without notice © 2017 PTC

Courtesy aLTRan

Copyright 1987-2017 © PTC Inc. All rights reserved. 21

😵 ptc

FLYWHEEL: FINITE FRICTION

Forward looking information subject to change without notice © 2017 PTC

Copyright 1987-2017 © PTC Inc. All rights reserved. 22

FLYWHEEL: FINITE FRICTION

<pre>Flansch_gleiten_area: Flansch_gleiten_force: Flansch_gleiten_load: Flansch_start_area: Flansch_start_force: Flansch_start_load: Kegel_any_slippage: Kegel_average_slippage: Kegel_gleiten_any_slippage: Kegel_gleiten_area: Kegel_gleiten_area: Kegel_gleiten_force. Kegel_gleiten_force_X: Kegel_gleiten_force_X: Kegel_gleiten_force_Y:</pre>	0.000000e+00 0.000000e+00 6.709057e+04 2.777301e+06 2.777301e+06 2.575836e+01 2.377562e-01 -2.596823e+01 2.399270e+01 2.497448e+03 -6.235947e+00 -5.119842e+01 5.422545e+05 -5.209540e+05 -5.316519e+05 -1.504889e+05 -1.067062e+05 5.317243e+05 6.282911e+01 7.510377e+01
Kegel_start_area:	3.961564e+04
Kegel_start_force:	2.916440e+06
Kegel_start_force_X:	-2.802505e+06
Kegel_start_force_X_proj:	-2.859860e+06
Kegel_start_force_Y:	-8.072097e+05
Kegel_start_force_Y_proj:	-5.716860e+05
Kegel_start_load:	2.859805e+06

Force magnitude calculations:

Kegel_start_force =

 $\sqrt{Kegel_start_force_X_proj^2 + Kegel_start_force_Y_proj^2}$

Kegel_start_force = $\sqrt{2.85986E6^2 + 5.716860E5^2}$ = 2.91644E6 OR Kegel_start_force = $\sqrt{2.802505E6^2 + 8.072097E5^2}$ = 2.91644E6

Axial force verification: Kegel_start_force_Y

Axial force = $F_{\alpha x} = -F_{\nu} = \frac{F_N \sin(\alpha + \rho)}{\cos \rho}$

Axial force = $\frac{Kegel_start_forc_X_projSin(4.76364+11.31)}{Cos(11.31)}$ Axial force = 8.07498E5

Coefficient of friction Verification

 $\mu_{Kegel} = \frac{Kegel_start_force_X_proj}{Kegel_start_force_Y_proj} = \frac{5.716860E5}{2.859860E6} = 0.2$

CREO 3.0 (M120) SIMULATE ENGINE ENVS SUPPORTED

- Accuracy:
 - **Poor**: MSE_CONTACT_FULL_LOOSER_CONVERGE: with this new ENV, engine will fully activate looser tolerance acceptance algorithm.
 - Medium: MSE_CONTACT_PARTIAL_LOOSER_CONVERGE: With this new ENV, engine will
 partially suspend the looser tolerance acceptance algorithm it will make the
 convergence requirements a bit tighter than default, however it will not fully suspend
 the looser acceptance algorithm.
 - High: MSE_CONTACT_SUSPEND_LOOSER_CONVERGE: with this new ENV, engine will completely suspend the looser tolerance acceptance algorithm and will always seek for 1e-12 default convergence norm
- Contact Interface load measure
 - Creo 2.0, this is calculated from element stress
 - Creo 3.0, this is calculated from spring stiffness
 - Creo 3.0, enable this with engine ENV
 - MSE_CONTACT_LOAD_FROM_STRESS

FEEDBACK ON SAXSIM2016 USER EXPERIENCE

1. Experience regarding the different contact models in Creo 2.0 & 3.0			
Contact model:	Friction free	Infinite friction	Finite friction
Experience won with the model	Very good (state Creo 2.0 M200); works quick, robust and reliable in most cases	Contains a significant risk to obtain erroneous or at least inaccurate results (Creo 1.0 M200)	Absolutely unsatisfying and unreliable, wasted time even to test (state Creo 3.0 M080)
Success rate (estimated value from project application experience)	>95 %, at least when used with SDA and linear material	60-70 %	0 %
Typical error examples/ problems observed	May underestimate Hertz contact pressure/contact stress with default settings	 Often shows poor convergence / many iterations necessary (very slow) May typically compute too much penetration and as consequence e.g. too low bolts loads at interpenetrating flanges 	 Fails with fatal error for any reason (stability issues, cuts down load step size until failure,) If the analysis completes, usually inaccurate or wrong results are obtained, often with too much interpenetration
Possible solutions	usually a refined mesh and reducing contact penetration helps	 increase allowed number of contact iterations >200 Unfortunately, this often cannot be fixed by reducing contact penetration, then try other options shown in this presentation 	Non - PTC R&D: Rework and fix the code!

PTC Actions:

- As outlined in earlier slides, we have already incorporated/fixed several issues reported in the finite friction functionality related to high **penetration** and low **accuracy**
- We have also made available finite friction verification and validation examples to Simulate user community
- We have plans to make available best practice document to users that will primarily focus on addressing general difficulties in contact analysis and possible remedies^{*}.

Forward looking information subject to change without notice © 2017 PTC

- General improvements/fixes in simulate engine Engine fixes

 - Engine improvements
- Finite friction improvements

 Algorithm improvements
 Interface forces

 - Slippage measures
 - Slippage indicators
 - Local/full sliding messages
- SAXSIM16 model discussions
 - Brake system with infinite friction
 - Brake system with finite friction
 - Flywheel axisymmetric model
 - Féedback
- Creo 5.0 Simulate Engine contact projects
- Conclusions

CREO 5.0 CONTACT PROJECTS*

- New Contact Interface user defined measures
 - Max Penetration
 - Contact Spring stiffness
- New Promotions
 - Config option sim_contact_penetration will be promoted to interface dialog, allowing user to input different max penetration caps to each contact interface
 - Calculate detailed stresses at contact interfaces checkbox/flag will also be promoted to interface dialog, allowing user to selectively choose this flag based on requirements
- New contact best practice Notes/help/paper will be made available to users

- General improvements/fixes in simulate engine Engine fixes

 - Engine improvements
- Finite friction improvements

 Algorithm improvements
 Interface forces

 - Slippage measures
 Slippage indicators

 - Local/full sliding messages
- SAXSIM16 model discussions
 - Brake system with infinite friction
 - Brake system with finite friction
 - Flywheel axisymmetric model
 - Féedback
- Creo 5.0 Simulate Engine contact projects
- Conclusions

• Up-to-Feb 2017, 77% simulate engine issues reported are resolved

- Finite friction issues are fixed and result validation/verification study cases are published in NAFEMS international conference last year
- SAXSIM2016 inputs/findings were recorded and appropriate action has been taken to resolve customer concerns
- Engine Enhancements in upcoming Creo 5.0 Simulate release*
 - Roadmap presented this morning by Jose Coronado, PM, Simulate.
 - Contact related projects are being implemented

